
_hyperscript cheatsheet
required, optional, (?? default value)
Event listeners
on add event listener

every do not queue events
mousemove event name
(clientX, clientY) expose the event’s properties
[clientX > 100] filter events

3 only respond to 3rd click
or 3 to 10 respond to 3rd, 4th … 10th click
or 3 and on respond to all clicks except 1st and 2nd

from #my-form element to attach listeners to, (?? me)

debounced at 200ms trailing debounce (200ms delay, resets on every event)
or throttled at 200ms every 200ms at most regardless of the number of events

or keyup ... specify many events, each with its own from/debounce/…

if events arrive while the listener is already running…
queue all add them to a FIFO queue

or queue none discard them
or queue first enqueue the first one, discard the rest
or queue last enqueue the last one, discard the rest (this is the default)

Property access
user.data.name ≡ user’s data’s name

≡ name of data of user
≡ data.name of user ≡ user’s data.name

CSS literals
#my-form Get element by id
#{getID()} Dynamic ID

.active Get elements by class

.{getClass()} Dynamic class

<em, i /> Query selector all
<ul:nth-child(${n}) /> Dynamic selector

Array operations
first in arr ≡ first from arr
≡ first of arr ≡ first arr

also random arr, last arr

Finding elements
closest <section/>
nearest enclosing section

previous <section/> from #sec-2
last section that comes before section 2 (?? me)

next <input, button, a/>
from document.activeElement
within #form
with wrapping

element to focus when pressing Tab in a modal dialog

Variable scopes
foo local variable by default
:foo element scoped variable, persisted

- can be declared with top-level set
- behaviors are isolated from one another

$foo global variable
Honorable mentions:
localStorage.foo value in local storage
@foo HTML attribute

Command index
required, optional, (?? default value)

Ex. do argA with argB and optional argC
does stuff with argA, argB and argC (?? default value)

add .class to elt
add @attribute=value to elt
add { font-size: ${size}px; } to elt
add classes/attributes/inline styles to elt (?? me)

append value to target
append to strings/arrays/elements, sets it = target (?? it)

async command | async do command… end
run commands in a non-blocking manner

call expr | get expr sets it = expr

continue skips to next iteration in a loop

decrement lvalue by amount
sets lvalue=lvalue - amount (?? 1)

fetch /url with option: value, …
fetch `/url/${id}/` with option: value, …
makes an HTTP request, see Fetch API docs for options

go to url /url in new window
go to url `/url/${id}/`
navigate to a URL in the browser

go to top of elt -- top/middle/bottom
go to top left of elt -- left/center/right
go to left of elt smoothly -- /instantly
scroll an element into view

halt the event’s default prevent default behavior
halt default same as above, and exits listener
halt the event’s bubbling stop event bubbling
halt bubbling same as above, and exits listener
halt the event stop both default and bubbling
halt all of the above

hide elt with strategy see show

if cond then … else … end if statement

increment see decrement

js(var) … end embed JavaScript

log value with func
logs the value to the console using func (?? console.log)

make a <tag#id.class /> called name
creates an element with the given tag, id and classes,
sets name (?? it) = the created element

make a Class from args… called name
calls the Class constructor with the args, sets name (?? it)
= the created object

put rvalue into lvalue see set

put content into elt
-- into/before/after/at start of/at end of
insert content into various parts of the elt

remove .class from elt see add
remove @attribute from elt see add

remove elt removes elt (?? me) from the document

repeat for name in iterable index i … end
for name in iterable index i … end
loop over an iterable, the loop variable is name (?? it)

repeat until event e from elt index i … end
Repeat every tick until event e is received from elt (?? me)

repeat while cond | repeat until cond … end
repeat n times index i … end
repeat forever … end

return value | exit return, see also halt

send evt(args…) to elt
trigger evt(args…) on elt
dispatch a DOM event on elt (?? me)

set lvalue to rvalue

settle waits for any animations/transitions to end

show elt with strategy when cond
-- strategy: display:_/visibility/opacity/…
show elt (?? me) using the strategy (?? display:block) if
cond (?? true), else hide it

take .class from eltA for eltB
remove class from eltA (?? .class) and add it to eltB (?? me)

tell elt … end set you = elt, default to you over me

throw exception throws an exception

toggle .class on eltA for t s
toggle [@attr=value] until evt from eltB
toggle between .class1 and .class2 on eltA
toggle classes and attributes on eltA (?? me)

transition the elt’s
prop-a from value to value … over t s

Animate style properties

wait t s -- or ms Waits for the given duration

wait for event or event2 or t s
waits for one of the events to occur, sets it=the event

